Smoothing spline ANOPOW

نویسندگان

  • David S. Stoffer
  • Li Qin
  • Wensheng Guo
چکیده

This paper is motivated by the pioneering work of Emanuel Parzen wherein he advanced the estimation of (spectral) densities via kernel smoothing and established the role of reproducing kernel Hilbert spaces (RKHS) in field of time series analysis. Here, we consider analysis of power (ANOPOW) for replicated time series collected in an experimental design where the main goals are to estimate, and to detect differences among, group spectra. To accomplish these goals, we obtain smooth estimators of the group spectra by assuming that each spectral density is in some RKHS; we then apply penalized least squares in a smoothing spline ANOPOW. For inference, we obtain simultaneous confidence intervals for the estimated group spectra via bootstrapping. & 2010 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Use of Two Smoothing Parameters in Penalized Spline Estimator for Bi-variate Predictor Non-parametric Regression Model

Penalized spline criteria involve the function of goodness of fit and penalty, which in the penalty function contains smoothing parameters. It serves to control the smoothness of the curve that works simultaneously with point knots and spline degree. The regression function with two predictors in the non-parametric model will have two different non-parametric regression functions. Therefore, we...

متن کامل

Calculation of the smoothing spline with weighted roughness measure

The (cubic) smoothing spline, of Schoenberg [S64] and Reinsch [R67], [R71], has become the most commonly used spline, particularly after the introduction of generalized cross validation by Craven and Wahba [CW79] for an automatic choice of the smoothing parameter. It is the purpose of this note to derive the computational details, in terms of B-splines, for the construction of the weighted smoo...

متن کامل

Regression with Ordered Predictors via Ordinal Smoothing Splines

Many applied studies collect one or more ordered categorical predictors, which do not fit neatly within classic regression frameworks. In most cases, ordinal predictors are treated as either nominal (unordered) variables or metric (continuous) variables in regression models, which is theoretically and/or computationally undesirable. In this paper, we discuss the benefit of taking a smoothing sp...

متن کامل

The Asymptotic Mean Squared Error of L-smoothing Splines

We establish the asymptotical equivalence between L-spline smoothing and kernel estimation. The equivalent kernel is used to derive the asymptotic mean squared error of the L-smoothing spline estimator. The paper extends the corresponding results for polynomial spline smoothing.

متن کامل

A Comparison of the Nonparametric Regression Models using Smoothing Spline and Kernel Regression

This paper study about using of nonparametric models for Gross National Product data in Turkey and Stanford heart transplant data. It is discussed two nonparametric techniques called smoothing spline and kernel regression. The main goal is to compare the techniques used for prediction of the nonparametric regression models. According to the results of numerical studies, it is concluded that smo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010